NO Metabolites Levels in Human Red Blood Cells are Affected by Palytoxin, an Inhibitor of Na+/K+-ATPase Pump



Cristiana Carelli-Alinovi11, #, Ester Tellone2, #, Anna Maria Russo2, Silvana Ficarra2, Davide Pirolli1, Antonio Galtieri2, Bruno Giardina1, 3, Francesco Misiti4, *
1 Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L.go F. Vito n.1, 00168 Rome, Italy
2 Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagnod’Alcontres 31, 98166 Messina, Italy
3 Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council (CNR), L.go F. Vito n.1, 00168 Rome, Italy
4 Human, Social and Health Department, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 03043 Cassino (FR), Italy


Article Metrics

CrossRef Citations:
0
Total Statistics:

Full-Text HTML Views: 383
Abstract HTML Views: 463
PDF Downloads: 142
Total Views/Downloads: 988
Unique Statistics:

Full-Text HTML Views: 261
Abstract HTML Views: 160
PDF Downloads: 83
Total Views/Downloads: 504



© Carelli-Alinovi et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, V. S.Angelo-Polo didattico della Folcara; Cassino (FR) 03043, Italy; Tel:+39 7762994423; Fax: 39 7762993902; E-mail f.misiti@unicas.it
# Both authors contributed equally to this work


Abstract

Palytoxin (PTX), a marine toxin, represents an increasing hazard for human health. Despite its high toxicity for biological systems, the mechanisms triggered by PTX, are not well understood. The high affinity of PTX for erythrocyte Na+/K+-ATPase pump is largely known, and it indicates PTX as a sensitive tool to characterize the signal transducer role for Na+/K+-ATPase pump. Previously, it has been reported that in red blood cells (RBC), probably via a signal transduction generated by the formation of a PTX-Na+/K+-ATPase complex, PTX alters band 3 functions and glucose metabolism. The present study addresses the question of which other signaling pathways are regulated by Na+/K+-ATPase in RBC. Here it has been evidenced that PTX following its interaction with Na+/K+-ATPase pump, alters RBC morphology and this event is correlated to decreases by 30% in nitrites and nitrates levels, known as markers of plasma membrane eNOS activity. Orthovanadate (OV), an antagonist of PTX binding to Na+/K+-ATPase pump, was able to reverse the effects elicited by PTX. Finally, current investigation firstly suggests that Na+/K+-ATPase pump, following its interaction with PTX, triggers a signal transduction involved in NO metabolism regulation.

Keywords: Metabolism, Na+/K+-ATPase pump, Nitric oxide, Palytoxin, Red blood cells.