Identification of Metastasis Associated Antigen 1 (MTA1) by Serological Screening of Prostate Cancer cDNA Libraries

Geng Li*, 1, Deepak P Assudani#, 1, Aija Line2, Fuming Cao1, Amanda Miles1, Robert C Rees1, Stephanie E.B McArdle*, 1
1 School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
2 Biomedical Research and Study Centre, University of Latvia, Latvia, LV-1067

Article Metrics

CrossRef Citations:
Total Statistics:

Full-Text HTML Views: 156
Abstract HTML Views: 162
PDF Downloads: 63
Total Views/Downloads: 381
Unique Statistics:

Full-Text HTML Views: 96
Abstract HTML Views: 87
PDF Downloads: 44
Total Views/Downloads: 227

© Li et al.; Licensee Bentham Open.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Address correspondence to this author at the School of Biomedical and Natural Sciences, Nottingham Trent University, Clifton Lane, Nottingham, NG118NS, UK; Tel: +44(0)115 848 6684; Fax: +44(0)115 848 3384; E-mail:
# These authors contributed equally to the manuscript.


Over the past 10 years the serological analysis of recombinant cDNA expression libraries (SEREX) has proved to be an effective method for the identification of tumour antigens. In the present study, two prostate cancer libraries were constructed and screened using autologous sera. Fifty five genes were isolated, including 46 known genes and 9 previously uncharacterised genes. Among the known genes, a metastasis-associated gene, MTA1, previously identified by differential cDNA hybridisation, was preferentially expressed in a panel of malignant tissues compared with normal tissues, as analysed by reverse transcriptase-polymerase chain reaction (RT-PCR). MTA1 transcripts were observed to be over-expressed in normal human testes as well as various cancer tissues when compared to the panel of normal tissues. MTA1 antigen reacted with 2 of 13 allogeneic prostate cancer patient sera tested, but no sera reactivity was observed to any of the normal adult sera tested. Furthermore, a similar distribution and expression level of MTA-1 was observed in murine tissues and cancer cell lines. Based on these findings and previous reports on the literature on this gene, MTA-1 can be considered not only as a “biomarker” of aggressive disease but also as a potential therapeutic target.

Keywords: Tumour antigen, SEREX, EST and MTA1.