All published articles of this journal are available on ScienceDirect.
Influence of Aromatic and Aliphatic Moieties on Thrombin Inhibitors Potency
Abstract
Thrombin is a plasma serine protease that plays a key role in coagulation and hemostasis but also in thromboembolic diseases. Direct thrombin inhibitors could be beneficial for future anticoagulant therapy in the prophylaxis of venous and arterial thrombosis as well as myocardial infarction. To design the efficient thrombin inhibitors we have synthesized and studied peptide-based inhibitors resistant to enzymatic degradation. Compounds with general formula X-DArg-D-Phe-OMe, where X = residue of 3-[6-ethyl-7-hydroxy-3-(4-methyl-thiazol-2-yl)-4-oxo-4H-chromen-2-yl]-propionic acid (chromone) and lauric acid were synthesized by classic methods of peptides synthesis in solution. The comparative inhibitory analysis of prepared compounds in relation to thrombin was conducted. The analysis of the inhibition effect of the peptide with retro-D-sequence modified by residues of natural organic compounds (chromone or fatty acid moiety) has demonstrated that modification with the fatty acid residue appeared to be the most successful one. Introduction of lauric acid residue (Ki = 1,76 μM) maximally increased the inhibition effect. These findings establish an important role of fatty moiety in structure of inhibitors in preferential binding and inhibition of thrombin active side.