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Abstract:
Background: Cancer stem cells (CSCs) represent a relatively small subset of cells within tumors, capable of self-
renewal and associated with metastasis and cancer recurrence. While conventional chemotherapy targets actively
dividing bulk tumor cells, dormant CSCs remain unaffected and survive. Hypoxia or deprivation of oxygen supply is a
common  feature  of  solid  tumors,  which  plays  a  critical  role  in  metastatic  progression  and  CSC  maintenance.
However, the cellular responses to hypoxia might be influenced by many factors, including the severity, duration, and
other specific characteristics of this stress.

Objective:  In  our  study,  we  assessed  the  impact  of  long-term  hypoxia  on  the  CSCs  population  in  5  cell  lines
representing 5 different tumor types.

Methods: We assessed and characterized the effect of oxygen concentration on CSC population using the sphere
formation assay. The protein levels in tumor spheres were examined by western blot analysis.

Results: Long-term hypoxia inhibited sphere formation by PC-3 and MDA-MB-231 CSCs. Moreover, chronic hypoxic
stress suppressed cell proliferation in tumor spheres in all 5 tested cell lines: SNB-19, HCT116, MDA-MB-231, NCI-
H460 and PC-3. This effect was accompanied by PCNA downregulation in tumorspheres derived from NCI-H460 and
PC-3 cells.

Conclusion: The prolonged hypoxic conditions impede tumor sphere formation by PC-3 prostate CSCs, primarily
through the downregulation of PCNA levels. The specific cellular response to hypoxia depends on the duration and,
supposedly, other specific features of this stress.
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1. INTRODUCTION
Cancer stem cells (CSCs) have been characterized as

cells within a tumor that possess the ability to self-renew
and generate the heterogeneous lineages of cancer cells
comprising  the  tumor  [1].  In  simpler  terms,  CSCs  are  a

subset  of  cells  capable  of  initiating  new  tumors  and
typically represent a small proportion of the overall cancer
cell population within a tumor [1]. The proportion of CSCs
within  a  tumor  can  vary  widely,  ranging  from  0.02%  to
25%, with higher ratios often observed in undifferentiated
tumors  such  as  leukemias  and  lymphomas,  and  lower

Published: August 22, 2024

https://openbiochemistryjournal.com/
https://orcid.org/0000-0002-6686-1968
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:AAAhunzyanov@kpfu.ru
http://dx.doi.org/10.2174/011874091X307243240513092933
http://crossmark.crossref.org/dialog/?doi=10.2174/011874091X307243240513092933&domain=pdf
https://creativecommons.org/licenses/by/4.0/
mailto:reprints@benthamscience.net
https://openbiochemistryjournal.com/


2   The Open Biochemistry Journal, 2024, Vol. 18 Akhunzianov et al.

percentages  more  commonly  found  in  solid  tumors  [2].
However, it has been suggested that not all cancers follow
the classical CSC model [3]. Instead, according to the CSC
plasticity model, both CSCs and non-CSCs can dynamically
switch  between  two  phenotypic  states  [4],  exhibiting
varying  levels  of  tumor-initiating  capacity,  treatment
response, clonogenic ability, and expansion potential [2].
CSCs can be identified and isolated based on cell surface
markers such as CD44 and CD133, functional markers like
aldehyde  dehydrogenase  activity,  and  most  importantly,
their tumor-initiating capacity [5-7].

The sphere formation assay is  a  commonly employed
method  to  assess  and  characterize  the  CSC  population
residing in tumors or cancer cell lines. This assay relies on
the ability of CSCs to proliferate and form tumor spheres
in non-adherent culture conditions using serum-free media
[8].

Accumulating  evidence  suggests  that  CSCs  play  a
pivotal  role  in  the  uncontrolled  growth  of  malignant
tumors,  therapy  resistance,  cancer  recurrence,  develop-
ment  of  protective  niches,  evasion  of  the  antitumor
immune  response,  and  tumor  metastasis  [9-11].  Mito-
chondrial  biogenesis  is  crucial  for  maintaining  the  CSC
phenotype  [12].  During  the  transition  from  anchorage-
dependent  to  anchorage-independent  growth,  CSCs
derived from breast cancer cell lines undergo a metabolic
shift from glycolysis to oxidative mitochondrial phenotype
[13].  At the same time, under hypoxic conditions,  breast
CSCs  redirect  their  metabolism  from  oxidative
phosphorylation  to  the  glycolytic  pathway  [14].  The
biological  activities  of  CSCs  are  regulated  by  several
pluripotency transcription factors: homeobox transcription
factor  Nanog  (Nanog),  octamer-binding  transcription
factor  4  (OCT4),  sex-determining  region  Y-box  2  (Sox2)
and  Krüppel-like  factor  4  (KLF4)  [15].  The  same  factors
specifically  contribute  to  the  reprogramming  of  somatic
cells,  inducing  a  state  similar  to  that  of  stem cells  [16].
These  four  master  transcription  factors  have  been
recognized as pivotal components of the gene regulatory
network responsible for coordinating the maintenance of
pluripotency  and  differentiation  in  stem  cells  [17,  18].
Oct4  and  Nanog  are  significantly  overexpressed  in  non-
small  cell  lung carcinoma [19],  breast  carcinoma tissues
and the MCF7 breast  cancer cell  line [20].  Moreover,  in
prostate  tumors,  the  expression  of  these  2  transcription
factors  correlates  with  HIF1α-positive  regions  and
prostate  tumor  Gleason  score  [21].

Hypoxia refers to a condition where a particular region
of  the  body  or  the  entire  body  is  deprived  of  sufficient
oxygen  supply  at  the  tissue  level,  resulting  in  impaired
normal  physiological  functions  and  homeostasis  [22].
Thus,  maintaining  oxygen  homeostasis  is  vital  for  cell
growth  and  survival  [23].  Physiological  oxygen  levels  in
healthy  tissues  typically  range  from  4.6%  to  9.4%  O2,
varying depending on the specific organ [24]. In contrast,
oxygen concentrations within tumors are generally lower,
averaging around 1-2% O2 or even less [25]. Deregulation
of cellular energetics is a hallmark property of cancer cells
[26].  Hypoxia  is  a  common feature  of  most  solid  tumors

and  is  known  to  promote  malignant  progression,
metastatic  dissemination,  chemotherapy  resistance,  and
ultimately, poor patient prognosis [27].

Hypoxia-inducible factors (HIFs) play a crucial role in
controlling  the  metabolic,  functional,  and  vascular
adaptations  to  low  oxygen  tension  in  healthy  and  tumor
cells. HIFs regulate a variety of target genes involved in
angiogenesis,  proliferation,  apoptosis,  survival,  and
adaptation to low oxygen levels [28]. Elevated expression
levels of  HIF1α or HIF2α in tumor biopsies from breast,
pancreatic, or lung cancer patients have been associated
with increased rates of metastasis and mortality [29]. The
expression  of  NANOG  is  regulated  by  the  HIF1  [30].
Moreover,  HIF  leads  to  CSC  enrichment  within  hypoxic
tumors  by  recruiting  NANOG  as  a  coactivator  for
telomerase  reverse  transcriptase  (TERT)  gene
transcription.  The  TERT  gene  encodes  the  telomerase
reverse transcriptase that maintains telomere length and
is essential for the process of stem cell self-renewal [31].

Hypoxia can manifest in different forms, ranging from
mild  to  severe.  Acute  and  chronic  hypoxia  are  the  two
most  common  and  well-described  subtypes  of  tumor
hypoxia  [32].  Acute  hypoxia  arises  from  perfusion
disturbances  in  small  blood  vessels,  resulting  from
irregular erythrocyte flow or local uncontrolled cell mass
increase. It typically lasts from minutes to hours [33]. In
contrast,  chronic  hypoxia  is  caused  by  limitations  in
oxygen  diffusion  due  to  the  overproliferation  of  cancer
cells and increased distance to the nearest blood vessels.
Under  chronic  hypoxia,  cells  experience  low  oxygen
tensions for extended periods, often exceeding 24 hours,
which  can  lead  to  cell  death  if  reoxygenation  does  not
occur  [33].  The  third  type  of  hypoxia  is  cyclic  hypoxia,
characterized by transient  periods of  hypoxia due to the
presence of immature vasculature. In response to hypoxia,
cancer  cells  release  angiogenic  factors  that  promote
neovascularization. However, even after the formation of
new blood  vessels,  hypoxia  persists  in  the  core  areas  of
solid  tumors  [34].  Oxygen  concentration  gradually
decreases from the periphery to the center of the tumor
sphere,  with  the  center  becoming  completely  anoxic  or
oxygen-deprived  for  tumor  spheres  larger  than
approximately  170  µm  in  radius,  as  estimated  in  lung
cancer  tumors  by  Thomlinson  and  Gray  [35].  This
diffusion-limited or chronic hypoxia is commonly observed
in solid tumors.

The different subtypes of hypoxia described above can
elicit  distinct  stress-related  responses  within  the  tumor,
thereby  influencing  tumor  development  and  treatment
response [32]. Hence, it is crucial to consider the type and
duration of hypoxia exposure when assessing the impact of
hypoxic  stress  on  cancer  cells  and  its  specific  biological
consequences.  In  this  study,  we  examined  the  effects  of
long-term hypoxia on tumorsphere formation by CSCs. We
utilized  five  different  cell  lines  representing  five  cancer
types  known for  their  propensity  to  develop  metastases:
MDA-MB-231  (breast  cancer),  SNB-19  (glioblastoma),
NCI-H460  (lung  cancer),  PC-3  (prostate  cancer),  and
HCT116 (colon cancer). It is important to note that breast,
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lung, colon and prostate cancers are the most frequently
diagnosed cancers according to worldwide statistics [36,
37].  We  included  the  SNB-19  cell  line  in  this  study
because  hypoxia  is  a  well-known  common  feature  of
glioblastoma tumors [38]. Also, HIF-1 was reported to be
an important driver of tumor progression [39]. Finally, the
above-mentioned  cell  lines  were  chosen  based  on  their
ability  to  form  tumor  spheres  in  serum-free  suspension
conditions.  Furthermore,  we  assessed  the  impact  of
hypoxia  on  the  expression  of  proliferating  cell  nuclear
antigen (PCNA), a marker of proliferation, and NANOG, a
marker  of  stem  cells,  in  tumorspheres.  The  goal  of  this
study  was  to  assess  the  effect  of  prolonged  hypoxic  and
nutrient-deprived  stress  on  CSC  features  across  5
different  cancer  types.  Here,  we  wanted  to  expand  our
knowledge  of  how  the  long-term  hypoxia  impacts  the
cellular  fates  during  cancer  progression.  The  obtained
results  complement  published  data  and  highlight  the
impor-tance  of  exposure  duration  on  CSC’s  stress
response.

2. MATERIALS AND METHODS

2.1. Cell Culture
The  PC-3  prostate  cancer  epithelial  cell  line  (ATCC

number: CRL-1435), triple-negative breast cancer (TNBC),
MDA-MB-231  cell  line  (ATCC  number:  HTB-26),  glio-
blastoma  cell  line  SNB-19  (ATCC  number:  CRL-2219),
colon cancer cell line HCT116 (ATCC number: CCL-247),
and  lung  cancer  cell  line  NCI-H460  (ATCC  number:
HTB-177)  were  generously  provided  by  Dr.  Jenny  L.
Persson's  laboratory  at  Umea University,  Sweden.  MDA-
MB-231, SNB-19, HCT116, and PC-3 cells were cultured in
Dulbecco's  Modified  Eagle  Medium (DMEM),  while  NCI-
H460  cells  were  cultured  in  Roswell  Park  Memorial
Institute  (RPMI)-1640  medium,  both  obtained  from
PanEco,  Russia.  The  culture  media  were  supplemented
with  10%  fetal  bovine  serum  (Gibco  Life  Technologies,
USA)  and  10%  penicillin-streptomycin  (PanEco,  Russia).
Cells were maintained in a 5% CO2 incubator (Eppendorf,
Germany)  at  37  °C.  Upon  reaching  80% confluency,  the
cells  were  detached  using  0.25%  trypsin  (Gibco  Life
Technologies, USA) and subsequently subcultured at a 1:3
ratio in six-well  plates (SPL Life Sciences, South Korea).
For  further  experiments,  cells  at  the logarithmic growth
phase,  when  they  reached  70-80%  confluency,  were
selected.

2.2. Sphere Formation Assay
To  prepare  the  sphere  culture  medium  (SCM),  B27

supplement (final concentration 1x, PanEco, Russia), EGF,
and FGF2 (SCI store, Russia) were added to a 1:1 mixture
of  DMEM  and  F12  (PanEco,  Russia),  with  a  final
concentration of 40 ng/ml for EGF and FGF2. Cells at the
subconfluent level were trypsinized, and the resulting cell
pellets  were  resuspended  in  SCM  at  an  approximate
concentration of 10^6 cells/ml. Subsequently, 100 µl of the
cell suspension was transferred into a tube containing 900
µl  of  SCM.  The  cells  were  gently  pipetted  multiple  times

using a 1.0 ml sterile insulin syringe needle to disintegrate
cell  clumps.  The  cell  number  was  determined  using  a
Bürker counting chamber (Thermo Fisher Scientific, USA).
For  seeding,  500  cells/dish  (HCT116)  or  2000  cells/dish
(MDA-MB-231,  NCI-H460,  PC-3,  SNB-19)  were  plated  in
non-adherent 35x10 mm culture dishes (SPL Life Sciences,
South Korea) containing SCM. The cells were cultured for
two weeks in a humidified incubator at 5% carbon dioxide
and  either  21%  (normoxic)  or  2%  (hypoxic)  oxygen
conditions.  Hypoxic  conditions  were  achieved  using  a
custom-made BACTROX hypoxic chamber (Shel Lab, USA).
The  spheres  were  counted,  and  photomicrographs  were
captured using a Leica DM IL Led Fluo microscope (Leica
Microsystems, Germany) equipped with a Leica DFC365 FX
camera. The diameter of the tumor spheres was measured
using  Leica  Application  Suite  X  (LAS  X)  software  (Leica
Microsystems, Germany). All experiments were conducted
in technical duplicates with three independent experiments.

2.3. Western Blot Analysis
The  spheres  were  lysed  in  Radioimmunoprecipitation

assay  (RIPA)  buffer  containing  protease  inhibitor  (PI,
Thermo  Fisher  Scientific,  USA)  and  phenylmethane-
sulfonyl fluoride (PMSF, Thermo Fisher Scientific, USA) for
40  minutes  on  ice,  followed  by  centrifugation.  Protein
concentrations  in  the  lysates  were  determined  using  the
bicinchoninic  acid  (BCA)  assay  (Thermo  Fisher  Scientific,
USA).  The  proteins  were  separated  based  on  molecular
weight  using  polyacrylamide  gel  electrophoresis  with  4%
stacking gels and 12% separating gels. A total of 30 µg of
protein  sample  mixed  with  4x  loading  buffer  was  loaded
into each well of the gel. After electrophoresis, the proteins
were electroblotted from the gel to a polyvinylidene fluoride
(PVDF)  membrane  (Bio-Rad  Laboratories,  USA)  using  a
semi-dry  transfer  method  following  the  standard  protocol
provided  by  Bio-Rad.  The  accuracy  of  the  transfer  was
verified by staining the gel with Ponceau S (Sigma-Aldrich,
USA). Non-specific binding was blocked by incubating the
membrane  overnight  in  a  5%  dry  milk  solution  in  tris-
buffered saline with Tween-20 (TBST) buffer. Subsequently,
the  membranes  were  incubated  with  primary  antibodies
diluted at a ratio of 1:200, including PCNA (36 kDa; cat. no.
sc-7909, Santa Cruz Biotechnology, USA) [12, 40], NANOG
(46  kDa;  cat.  no.  sc-134218,  Santa  Cruz  Biotechnology,
USA) [41] and β-actin (42 kDa; cat. no. A00730, Genscript
Biotech,  USA)  [42].  Horseradish  peroxidase  (HRP)-
conjugated  secondary  antibodies  (anti-rabbit  IgG  cat.  no.
A16110 or anti-mouse IgG cat. no. A16078; Thermo Fisher
Scientific, USA) were then applied to the membranes. The
visualization  of  the  labeled  proteins  of  interest  was
achieved by incubating the membranes in a Bio-Rad HRP-
substrate solution for several minutes.

2.4. Statistical Analysis
The in vitro data are presented as the mean ± standard

error  of  the  mean  (SEM),  obtained  from  at  least  three
independent experiments, with a minimum of two technical
replicates  per  experiment,  unless  otherwise  stated,  a  p-
value  of  ≤0.05  was  considered  significant.  Statistical
significance  was  measured  using  the  Student's  t-test.
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Fig. (1). The effect of oxygen availability on tumorsphere formation by SNB-19, PC-3, HCT116, MDA-MB-231 and NCI-H460 cells.
Cells were seeded into low-attachment dishes in 3000 μl of cancer stem cell medium to generate tumorspheres. Tumor spheres were
grown for 14 days in normoxia (21% O2) or hypoxia (2% O2): (A) Representative photomicrographs of tumor spheres under normoxia (top)
and hypoxia (bottom); (B) The total number of tumor spheres developed in normoxia and hypoxia; (C) The size of tumor spheres in µm
was measured using image analysis software; shown are the means of 3 independent experiments using cells of different passages.* = p <
0.05.
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3. RESULTS

3.1. Long-term Hypoxia Inhibits Sphere Formation by
PC-3 and MDA-MB-231 Cancer Stem Cells

The  tumor-sphere  formation  assay  is  a  commonly
employed  method  to  assess  the  frequency  of  tumor-
initiating  cells  within  a  heterogeneous  population  of
cancer  cells  [43].  Tumor  spheres,  dense  and  spherical
structures, arise from the proliferation of a single cancer
stem  cell  (CSC)  and  are  cultivated  under  serum-free
suspension  conditions  [44].  This  culture  environment
favors the survival and proliferation of CSCs or progenitor
cells, which possess the ability to generate new spheres.
This characteristic is a shared property among stem cells
and  tumor-initiating  cells  from  various  lineages.  In
suspension culture, CSCs can form tumor spheres within
10-14  days,  with  diameters  ranging  from  50  to  250  µm
(Fig. 1A). The total number of tumor spheres generated is
commonly used as an indicator of the CSC/progenitor cell
proportion within the cancer cell population in vitro [45].
Notably,  compared  to  other  cell  lines,  MDA-MB-231
exhibited  a  lower  capacity  to  form  well-rounded  and
compact tumor spheres under both normoxic and hypoxic
conditions  (Fig.  1A).  Interestingly,  under  hypoxic
conditions  (2% O2),  the  total  number  of  formed spheres
was  significantly  reduced in  two of  the  tested  cell  lines:

PC-3  (representing  prostate  cancer)  and  MDA-MB-231
(representing  triple-negative  breast  cancer)  (Fig.  1B).
However,  for  the  remaining  three  tested  cell  lines
(SNB-19, HCT-116, NCI-H460), no significant differences
in  sphere-forming  efficiency  were  observed  between
normoxia and hypoxia. It is worth noting that with SNB-19
cells,  there  was  a  trend  towards  increased  total
neurosphere  formation  under  hypoxic  conditions  (30
spheres  in  hypoxia  compared  to  21  in  normoxia).

3.2. Long-term Hypoxia Inhibits Cell Proliferation in
Tumor Spheres Developed by SNB-19, MDA-MB-231,
PC-3, HCT116, NCI-H460 Cancer Stem Cells

A  notable  distinction  in  the  mean  diameter  of  tumor
spheres  was  observed  between  normoxic  and  hypoxic
conditions  for  all  cell  lines  examined  (Fig.  1C).
Specifically,  the  average  sphere  size  was  186  µm under
normoxia, whereas it decreased to 91 µm under hypoxia.
The  induction  of  hypoxic  stress  exerted  a  significant
influence  on  the  behavior  of  CSCs  cultivated  in
suspension,  thereby  impacting  sphere  formation.  We
propose  that  continuous  exposure  to  hypoxic  conditions
leads  to  a  deceleration  of  cell  division  rates  within  the
tumor spheres. Consequently, the persistence of hypoxia
gives  rise  to  discernible  variations  in  sphere  size
contingent  on  the  availability  of  oxygen.

Fig. 2 contd.....
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Fig. (2). The effect of tested compounds on PCNA and NANOG levels in tumor spheres: (A) The representative image of the western blot
results from 3 independent experiments; β-actin was used as an internal control; (B) The relative expression levels of PCNA and NANOG
were analyzed by densitometry; β-actin was used as a normalization control (n = 3; * - p ≤ 0.05).

3.3.  Long-term  Hypoxia  Leads  to  PCNA  Down-
regulation in PC-3 and NCI-H460 Tumorspheres

Considering  the  observed  reduction  in  the  average
diameter  of  spheres  under  hypoxic  conditions  across  all
tested  cell  lines,  we  proceeded  to  investigate  the
expression  of  commonly  employed  markers  associated
with  proliferation  and  self-renewal.  Ki-67  and  PCNA are
widely  recognized  indicators  of  tumor  cell  proliferation,
with PCNA being a crucial component involved in nucleic
acid metabolism and the replication and repair processes
[46]. In this study, we investigated the expression levels of
PCNA  and  NANOG  in  tumorspheres  derived  from  five
different  cell  lines,  under  both  normoxic  and  hypoxic
conditions (Fig. 2A,  B).  Notably,  our findings revealed a
substantial reduction in PCNA protein levels in PC-3 and
NCI-H460  tumor  spheres  under  hypoxic  conditions  (Fig.
2B).  Conversely,  the  levels  of  NANOG  remained
unaffected  by  the  hypoxic  environment  across  all  five
tested  cell  lines  (Fig.  2B).

4. DISCUSSION
Metastasis  is  recognized  as  the  leading  cause  of

cancer-related  morbidity  and  mortality,  accounting  for
approximately  90%  of  cancer-related  deaths  [47].
Advances in early detection and novel treatment strategies
have  significantly  improved  cancer  survival  rates.
However,  conventional  radiotherapy  and  chemotherapy
primarily target rapidly dividing bulk tumor cells, leaving
behind  a  reservoir  of  treatment-resistant  CSCs  that  can
lead to fatal relapses years or even decades later [48].

In  2010,  Li  et  al.  provided  direct  evidence  of  CSCs
contributing to metastasis. Their study demonstrated that
breast CSCs, identified by the stem cell  markers CD44+
and  CD24-/low,  initiated  primary  tumor  formation  and

subsequently developed lung metastases [49]. Metastasis
occurs due to a combination of factors such as oxygen and
nutrient deprivation, lactic acid production, and immune
responses [50]. Hypoxia, in particular, has been implicated
as  a  crucial  environmental  factor  promoting  metastatic
progression  in  various  tumor  types  [25,  51,  52].
Upregulation  of  hypoxia-inducible  factors  (HIF-1  and
HIF-2)  has  been  associated  with  increased  distant
metastasis  and  poor  overall  survival  in  many  cancers.
Immunohistochemical analysis of primary tumor samples
has revealed a correlation between HIF-1 expression and
metastasis  in  patients  with  lung  [53],  esophageal  [54],
breast  [55],  and  pancreatic  cancers  [56].  In  melanoma,
both HIF1α and HIF2α independently facilitate metastasis
by  regulating  cell  invasion  and  remodeling  the
extracellular  matrix  [57].

Our  study  aimed to  investigate  the  impact  of  oxygen
availability  on CSCs.  We employed the sphere formation
assay,  a three-dimensional  culture technique that serves
as  a  functional  test  for  stem/progenitor  cell  activity  in
vitro.  Among  the  five  tested  cell  lines,  we  observed  a
significant reduction in the total number of spheres under
hypoxic  conditions  in  PC-3  and  MDA-MB-231  cells.  In
tumorspheres  derived  from  PC-3  cells,  this  was
accompanied  by  PCNA  downregulation.  Similarly,  a
significant decrease in relative mRNA expression of PCNA
in  hypoxia  was  detected  before  in  HepG2-derived
tumorspheres [58]. In particular, hypoxic HepG2 spheres
exhibited  higher  proliferative  capacity  on  the  7th  day  of
culture  with  both  higher  cell  yield  and  PCNA  marker
expression; but on the 15th day the obtained results were
completely  opposite:  hypoxia  significantly  reduced  their
cell yield along with downregulation of PCNA expression.
Thus,  authors  suggest  that  a  hypoxic  microenvironment
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promotes  tumor  sphere  growth  during  the  initial  phase,
but  in  the  later  stage  of  cancer  progression  prolonged
hypoxia causes alterations in their cellular features. In our
study,  we  did  not  detect  any  significant  differences  in
tumorsphere count with the other 3 tested cell lines. We
believe this can be related to the fact that every tested cell
line  represents  a  different  cancer  type.  Moreover,  the
culture conditions and the duration of exposure to hypoxia
might have a serious impact, since the prolonged hypoxia
and nutrient deprivation stress can alter the cellular fate
by inducing quiescence to promote the reprogramming of
cancer  cells  into  a  non-proliferating  dormant  state.
Interestingly,  previous  reports  have  indicated  that  PC-3
spheres exhibit increased size and number when exposed
to shorter durations of hypoxia (up to 72 hours) compared
to  normoxic  conditions  [59].  Similar  findings  were
reported  in  experiments  with  the  MDA-MB-231  cell  line
[60]. In prostate cancer cells, HIF-1α levels rise within six
hours  of  hypoxia  exposure  and  decline  after  24  hours.
Hypoxic stress triggers the demethylation of HIF-1α and
HIF-2α, which in turn stabilizes NANOG mRNA, promoting
a CSC phenotype [61]. Prolonged hypoxia pretreatment for
72  hours  dramatically  enhances  primary  and  secondary
mammosphere  formation  at  one  or  two  weeks  after  the
termination  of  hypoxic  exposure  [62].  Our  experiments
involved continuous growth of tumor spheres under either
normoxic or hypoxic conditions (1% O2) for the entire two-
week  period,  yielding  contrasting  results.  Based  on  our
findings, we observed that long-term exposure to hypoxia
led  to  the  inhibition  of  tumor  sphere  formation  in  MDA-
MB-231  and  PC-3  cell  lines.  Furthermore,  our  results
indicated a reduction in PCNA levels within tumor spheres
derived from PC-3 and NCI-H460 cells.

CONCLUSION
To  summarize,  we  propose  that  prolonged  hypoxic

conditions  impede  tumor  sphere  formation  by  prostate
cancer stem cells, primarily through the downregulation of
PCNA  levels  and  the  consequent  suppression  of  DNA
replication. Interestingly, in contrast to previous research,
we  did  not  observe  any  significant  effect  of  chronic
hypoxia on NANOG levels in tumorspheres across all five
tested cell lines. Hence, the specific cellular responses to
hypoxia appear to be influenced by the severity, duration,
and  other  specific  characteristics  of  the  hypoxic  stress.
Consequently,  personalized  treatment  strategies  that
consider  individual  patient  characteristics,  including
intratumoral  oxygenation,  may  offer  improved  and  cost-
effective approaches to prevent cancer metastasis.
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