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Abstract:

Obesity is a chronic condition that is also a risk factor of several other chronic conditions including type 2 diabetes. The effects of maternal obesity
and type 2 diabetes on fetal development and offspring health are mediated through the transmission of epigenetic modifications in addition to the
possible permanent changes of the organs caused by the intrauterine environment hypothesized by the Developmental Origins of Health and
Disease (DOHaD) theory. Epigenetic modifications can be altered by environmental factors including dietary and lifestyle factors. The current
priorities include identification and confirmation of the specific epigenetic biomarkers associated with obesity and type 2 diabetes in human
subjects and identification of the dietary and lifestyle factors that contribute to each of the identified specific epigenetic biomarkers.
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1. INTRODUCTION

The  prevalence  of  obesity  and  type  2  diabetes  has
dramatically  increased  in  the  past  3  decades  [1].  Obesity  is
defined  by  increased  body  weight,  body  mass  index  (BMI)
equal or more than 30 kg/m2, as a result of the accumulation of
extra  energy  as  lipids  in  the  adipose  tissues.  Obesity  is
associated with insulin resistance and low-grade inflammation
[2].  Type  2  diabetes  is  characterized  by  insulin  resistance
associated  with  dysregulation  of  blood  glucose  homeostasis
[3]. Therefore, obesity and type 2 diabetes are closely related
chronic conditions with some shared common characteristics,
including  higher  blood  glucose  levels  caused  by  insulin
resistance. There are more than 90% of type 2 diabetes patients
developed from obesity [3]. On the other hand, children of the
mothers with diabetes have increased risk to become obese [4].
Obesity  is  also  a  risk  factor  for  other  chronic  conditions,
including cardiovascular disease, hypertension, cancer, etc [5,
6]. The etiology studies reveal that obesity and type 2 diabetes
are  caused  by  genetic  and  environmental  factors,  including
dietary  and  lifestyle  factors  [7].  However,  the  pathologic
mechanisms involved in the development of obesity and type 2
diabetes are still not totally clear.

2.  THE  MECHANISMS  OF  DEVELOPMENT  OF
OBESITY

It has  been speculated  by the  Developmental  Origins of
Health  and Disease  (DOHaD)  hypothesis  that the  fetal  and
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infant phases of life have effects on the development of adult
obesity and metabolic disorders [8]. The fetus makes predictive
adaptations  in  response  to  the  factors  in  the  intrauterine
environment,  resulting  in  permanent  adjustments  in  organs
involved  in  the  homeostatic  regulations  to  adapt  to  the
intrauterine  and  possible  adverse  postnatal  environment  [9].
These  permanent  changes  of  certain  organs  at  specific
developmental  stages  of  the  fetus  caused  by  the  intrauterine
environment factors may have adverse long-term health effects
on the adult offspring. This hypothesis can be perfectly used to
explain that the children born to the mother exposed to famine
during  the  pregnancy  had  increased  adiposity  and  metabolic
disorders [9]. However, organisms survive by adapting to the
constantly  changing  environment  over  time  not  only  at  one
time  point.  Recent  studies  indicate  that  epigenetic
modifications  altered  by  environmental  factors,  including
dietary and lifestyle factors, are involved in the development of
obesity and type 2 diabetes, in addition to the involvement of
genetic  factors  such  as  single  nucleotide  polymorphisms
(SNPs) [10 - 14]. Epigenetic modifications, the modifications
on top of the genetic coding, are the modifications added to the
genome  rather  than  changing  the  genetic  coding.  These
epigenetic  modifications  typically  include  genomic  DNA
methylation, histone tail modifications, and non-coding small
RNAs (ncRNAs) such as microRNAs (miRNAs) [7, 15]. It has
been  demonstrated  that  these  epigenetic  modifications  can
affect each other. For example, methyl CpG-binding protein 2
binds to methylated DNA and subsequently recruits enzymes
such  as  histone  deacetylases  and  histone  demethylases  to
modify  histones  [16  -  18].  Environmental  factors  including
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dietary and lifestyle factors induce changed levels of epigenetic
modifications and subsequently cause a change of expression
of genes involved in the development of chronic diseases [7,
11,  19].  In  real  life,  it  takes  long  periods  of  time  for  the
environmental  factors  to  cause  changes  of  epigenetic
modifications involved in development of chronic conditions.
That is why chronic conditions such as obesity, type 2 diabetes,
and  cardiovascular  disease  may  take  years  and  decades  to
develop.

3.  TRANSMISSION  OF  EPIGENETIC
MODIFICATIONS OF OBESITY TO THE OFFSPRING

The statistical  data from the Centers for  Disease Control
and Prevention  (CDC) indicate  that  increasing  prevalence  of
childhood obesity is well correlated with increasing adulthood
obesity  and  type  2  diabetes  [1,  20].  Human  obesity  and
diabetes are associated with reproductive disorders, including
low fertility  [21].  It  is  interesting to  notice  that  the  maternal
effects are considered in most of the human studies addressing
childhood obesity, while the sperms from the paternal side are
being paid more attention when addressing reproductive issues
of  parents  with  obesity  and  type  2  diabetes  [8,  20,  21].  In
addition,  it  has  been  demonstrated  using  rodent  models  that
both  maternal  oocytes  and  paternal  sperms  with  altered
epigenetic  modifications  from  obese  parents  are  involved  in
affecting the health of the offspring adversely [22 - 24]. These
lines of evidence suggest that altered epigenetic modifications
of  gametes  from  obese  parents  are  involved  in  passing  on
obesity  to  the  offspring.  The  detailed  mechanisms  of
transgenerational  transmission  of  epigenetic  modifications
associated with obesity are being addressed at the current time.

3.1.  Effects  of  Maternal  Epigenetic  Modifications  of
Obesity

The effects of maternal obesity and type 2 diabetes on fetal
development  and  offspring  health  are  mediated  through  the
epigenetic  modifications  transmitted  from  the  mother  to  the
offspring, in addition to the possible permanent changes of the
organs caused by the intrauterine environment hypothesized by
the DOHaD theory [25].  Increased overall  DNA methylation
levels are observed in oocytes of mice of both high-fat diet and
ob/ob obese mouse models with increased methylation levels
of the Leptin gene promoter and decreased methylation of the
promoter of PPARα gene that encodes for a transcription factor
mediating adipogenesis [22, 26]. In the adipose tissues of diet
induced  obese  mice,  DNA  methylation  levels  of  the  Leptin
gene  promoter  and  the  binding  of  DNA  methyltransferases
(DNMTs) are increased [27]. Differential methylation patterns
are observed in oocytes of type 1 diabetes mouse model and
bovine blastocytes under in vitro hyperinsulinemia [28, 29]. In
mouse models, maternal diabetes affects methylation levels of
imprinted  genes  in  oocytes  associated  with  decreased
expression  of  DNMTs  [21].  The  studies  on  modifications  of
protein molecules in obesity and diabetes, such as acetylation
of  superoxide  dismutase  (SOD),  that  are  not  affecting  gene
expression should not be considered epigenetic modifications,

even deacetylation of SOD plays an important protective role
against oxidative stress in oocytes [21].

3.2. Effects of Paternal Epigenetic Modifications of Obesity

Research on transgenerational transmission indicates that
obese  male  individuals  affect  the  health  of  the  offspring
through  the  epigenetic  modifications  carried  by  the  sperm,
including  altered  levels  of  global  DNA  methylation,  histone
acetylation,  and  ncRNA  [24,  30,  31].  Male  obesity  model
induced  by  high-fat  diet  affects  the  metabolism  and
reproduction  of  the  F1  generation  associated  with  reduced
sperm motility and increased DNA damage [32]. High-fat diet
reduces global genomic DNA methylation levels in the sperm
and  in  the  spermatozoa  of  the  offspring  [33,  34].  Increased
H3K9 acetylation associated with decreased sirtuin 6 (SIRT6)
deacetylase  in  the  nucleus  of  male  mouse  sperm  caused  by
high-fat  diet  is  associated with increased DNA damage [35].
These results further confirmed that increased overall histone
acetylation levels during sperm maturation caused by inhibition
of  histone  deacetylase  by  Trichostatin  A  are  associated  with
decreased  sperm  quantity  and  DNA  damage  [36,  37].  When
high fat diet induced obesity mouse model was used to study
the  alteration  of  the  sperm  miRNA  levels,  differential
expression of miRNAs was observed in the sperms of the obese
mice  induced  by  high  fat  diet,  however,  the  same  set  of  the
abundant miRNAs was not observed in the sperms of the F1
offspring  male  mice  even  the  metabolic  and  reproductive
phenotypes were also observed on the F2 offspring mice [31].
This  evidence  suggests  that  there  are  other  mechanisms  in
addition  to  epigenetics  involved  in  transgenerational
transmission of  obesity.  DOHaD hypothesis  might  be one of
the possible mechanisms.

4. QUESTIONS AND PERSPECTIVES

As  epigenetic  modifications  can  be  altered  by
environmental factors, including dietary and lifestyle factors,
the mechanisms remain unclear on how malnutrition in early
life,  including  energy  imbalance,  can  have  long-term effects
such as obesity and metabolic disorders on the adult offspring.
It is likely that epigenetic modifications from the gametes and
the  permanent  adjustments  in  fetal  organs  caused  by  the
intrauterine environment factors are both involved in affecting
the health of the offspring (Fig. 1). As epigenetic modifications
such  as  DNA  methylation  affect  genetic  alterations,  the
environment  also  shapes  the  species  through  epigenetic
modifications during the selection process [38]. Since obesity
is  a  chronic  condition  that  is  mostly  related  to  dietary  and
lifestyle  factors  as  the  typical  environmental  factors,  it  is
expected that  many of the remaining questions related to the
role of epigenetic modifications in the development of chronic
diseases will be first addressed in obesity and type 2 diabetes.
The knowledge of epigenetics in obesity and type 2 diabetes
will  accelerate  the  studies  to  address  the  involvement  of
epigenetic  modifications  caused  by  environmental  factors  in
the development of other chronic conditions.
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Fig. (1). Schematic of the effects of maternal and paternal obesity or type 2 diabetes on offspring health.

CONCLUSION

It  is  a  priority  at  this  time  to  identify  and  confirm  the
specific epigenetic biomarkers associated with obesity and type
2 diabetes in human subjects. These biomarkers can be used to
develop prognosis strategies. Another priority is to identify the
dietary  and  lifestyle  factors  that  contribute  to  each  of  the
identified specific epigenetic biomarkers. This knowledge will
facilitate developing management strategies for prevention and
treatments.  Some  of  the  miRNA  epigenetic  biomarkers
associated  with  obesity  and  type  2  diabetes  may  be  used
directly to develop drugs. For example, if a specific miRNA is
identified  to  facilitate  changing  white  adipocytes  to  become
brown  adipocytes,  then  this  miRNA  can  be  synthesized  and
delivered into white adipose tissues to treat obesity.
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